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A B S T R A C T   

Ketamine helps some patients with treatment resistant depression (TRD), but reliable methods for predicting 
which patients will, or will not, respond to treatment are lacking. Herein, we aim to inform prediction models of 
non-response to ketamine/esketamine in adults with TRD. This is a retrospective analysis of PHQ-9 item response 
data from 120 patients with TRD who received repeated doses of intravenous racemic ketamine or intranasal 
eskatamine in a real-world clinic. Regression models were fit to patients’ symptom trajectories, showing that all 
symptoms improved on average, but depressed mood improved relatively faster than low energy. Principal 
component analysis revealed a first principal component (PC) representing overall treatment response, and a 
second PC that reflects variance across affective versus somatic symptom subdomains. We then trained logistic 
regression classifiers to predict overall response (improvement on PC1) better than chance using patients’ 
baseline symptoms alone. Finally, by parametrically adjusting the classifier decision thresholds, we identified 
optimal models for predicting non-response with a negative predictive value of over 96 %, while retaining a 
specificity of 22 %. Thus, we could identify 22 % of patients who would not respond based purely on their 
baseline symptoms. This approach could inform rational treatment recommendations to avoid additional 
treatment failures.   

1. Introduction 

Despite effective treatments for depression, such as psychotherapy 
(Cuijpers et al., 2020) and monoamine-based antidepressants (Cipriani 
et al., 2018), many patients do not experience remission even after 
multiple trials of different treatments (Rush et al., 2006; McIntyre et al., 
2023). With a novel mechanism of action, ketamine offers hope for such 
patients with treatment resistant depression (TRD) (McIntyre et al., 
2021). However, our ability to predict which patients will respond to 
ketamine remains limited. 

Prior studies have identified potential moderators of response, such 
as obesity (Niciu et al., 2014; Freeman et al., 2020), family history of 
alcohol use disorder (Niciu et al., 2014; Phelps et al., 2009), and 

concomitant benzodiazepine use (Andrashko et al., 2020). Baseline 
anhedonia and anxious distress were identified as positive predictors of 
response to esketamine in one study (Pettorruso et al., 2023), and early 
symptomatic change has been identified as a potential predictor of 
remission with IV ketamine (Lipsitz et al., 2021). Despite these prom-
ising findings, a recent large meta-analysis failed to detect any consistent 
patient-level predictors of response to ketamine (Price et al., 2022). In 
the absence of consistent predictors of response, it remains difficult to 
stratify and select the optimal treatment for a particular patient among a 
growing list of options for TRD, including electroconvulsive therapy 
(ECT) (Van Diermen et al., 2018), transcranial magnetic stimulation 
(TMS) (Berlim et al., 2013), magnetic seizure therapy (MST) (Kayser 
et al., 2015), deep brain stimulation (DBS) (Figee et al., 2022), and 
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psychedelic-assisted psychotherapy (Goodwin et al., 2022). 
Prediction fundamentally rests on a choice of how to measure 

changes in the outcome of interest, in this case changes in depression. 
Most clinical studies utilize questionnaire sum scores to quantify 
depression before and after treatment, with response defined via a 
proportional drop in the sum score. With respect to validated ques-
tionnaires, sum scores can mask individual differences or dynamics at 
the level of symptoms (Borsboom and Cramer, 2013; EI Fried and Nesse, 
2015) or dimensional features of illness (Cuthbert and Insel, 2013). For 
example, different symptom clusters may have distinct etiological and 
physiological underpinnings, which may, in turn, respond differently to 
treatments (Chekroud et al., 2017; EI Fried and Nesse, 2015). Although 
many studies have reported ketamine’s effects specifically on suicidality 
(Jollant et al., 2023), we are aware of only a few studies that have 
compared how ketamine affects different depression symptoms or 
symptom clusters (Floden et al., 2022; Park et al., 2020; Chen et al., 
2021; Rodrigues et al., 2020). None of those studies have modeled tra-
jectories of symptoms over time. 

Our first goal, therefore, was to model how individual symptoms of 
depression change over time for patients undergoing repeated ketamine 
treatments. This is a secondary analysis of real-world clinical data from a 
population of military veterans, most of whom have numerous psychi-
atric comorbidities. Over two-thirds of the patients had a diagnosis of 
PTSD in addition to major depressive disorder. As such, these data 
reflect how ketamine may be expected to perform for the treatment of 
TRD among complex patients, the very patients who could benefit most 
from innovative treatments. In earlier studies from the same population, 
our group has found that ketamine is effective for these patients, but 
with lower response rates than commonly reported in clinical trials 
(Artin et al., 2022; Bentley et al., 2022). This further highlights the need 
for reliable predictors of response or, perhaps more importantly, pre-
dictors of non-response to ketamine among complex patients. 

As a secondary goal, building on our models of symptom trajectories, 
we used machine learning classifiers to predict whether patients would 
respond to ketamine using their baseline item by item PHQ-9 symptom 
scores. We also developed a model that can predict non-response, i.e. 
treatment failure, with very high confidence for a meaningful subset of 
the patients. This approach, based on a symptom level analysis, informs 
personalized treatment assignment considerations. Our method for 
identifying patients who are unlikely to respond to ketamine could 
prove useful, if replicated, for guiding treatment recommendations 
among a growing list of interventions targeting TRD. 

2. Methods 

2.1. Patients 

Data were obtained from 120 patients who underwent serial keta-
mine or esketamine induction treatments for depression at the San Diego 
Veterans’ Administration hospital between January 2020 and June 
2022. 85 patients were male and 35 were female. Ages ranged from 26 to 
75 (mean 45, standard deviation 12) years. While only 92 % (110 of 
120) had a diagnostic code of MDD in the electronic medical record, all 
patients were specifically referred to the ketamine clinic for clinical 
depression. Among the 10 patients without a diagnostic code of MDD, 
their average baseline PHQ-9 score was 18.2, and all but one had a 
baseline PHQ-9 score at least in the “moderate depression” range. Co-
morbidity was also very common. The most frequently co-occurring 
condition was PTSD in 73 % of patients, with less frequent conditions 
including generalized anxiety disorder, bipolar disorder, ADHD, 
borderline personality disorder, and various substance use disorders. 
This study was approved as an institutional review board (IRB) exempt 
study by the local VA institutional review board (IRB 1,223,219). 

2.2. Treatments 

Ketamine was administered via either the intranasal (esketamine, n 
= 99), intravenous (racemic, n = 20), or intramuscular (racemic, n = 1) 
routes. Individual patients received the same route and formulation of 
ketamine for all sessions. Intranasal esketamine doses typically started 
at 56 mg and were increased to 84 mg after the initial session. Intra-
venous doses had more variability, as they were dosed at 0.5 to 1 mg/kg, 
with doses adjusted based on tolerability, side effects and efficacy. 
Formal psychotherapy was not paired with ketamine sessions, though 
psychological support was available if needed. Most patients (110 of 
120) completed at least eight treatment sessions, with the remaining 
completing between 2 and 7 sessions each. 

2.3. Analysis of average PHQ-9 scores 

This is a secondary analysis of PHQ-9 data. Patients completed PHQ- 
9 questionnaires at baseline and prior to ketamine treatment sessions. 
Supplemental Table 1 lists the full text for the nine items of the PHQ-9. 
Average PHQ-9 sum scores across patients were computed across the 
first eight treatment sessions. Separately, average PHQ-9 item responses 
were computed across the eight sessions. Significant change in sum score 
was defined as p < 0.05 on the Friedman chi-square test for repeated 
measures, as the first two sessions’ data violated normality (p < 0.05, 
Shapiro-Wilk test). Significant change in item response was defined as p 
< 0.006 (after Bonferroni correction for multiple comparisons) on the 
Friedman test. Only patients who completed a PHQ-9 before all eight 
sessions (82 of 120) were included in these repeated measures tests. 

2.4. Analysis of item trajectories 

Item responses were analyzed across treatment sessions for each 
item, i, and for each patient, p. Linear (Eq. (1)) and exponential (Eq. (2)) 
models were fit to item response trajectories by minimizing the residual 
sum-squared errors (RSS). In the linear model, m is the linear slope, t is 
time in days, and b is the intercept. In the exponential model, a is a 
scaling factor, m is a growth factor, t is time in days, and b is a constant 
offset. In both models, m reflects a rate of change in item response. 

yi,p(t) = mi,p t + bi,p (1)  

yi,p(t) = ai,p e− mi,p t + bi,p (2) 

For each model, the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) were computed for the purposes of model 
selection. Specifically, AIC and BIC were computed using the RSS from 
model fitting, assuming independent and identically distributed (IID) 
residuals following a normal distribution. For each patient, the winning 
model was defined as the model with lowest AIC and BIC for the ma-
jority of items. In turn, the best overall model for a given questionnaire 
was defined as the winning model for the majority of patients. The linear 
model, as the best overall, was used as the basis of all subsequent ana-
lyses. Differences in linear slopes between the items was defined as p <
0.05 on the Friedman test for repeated measures, with post-hoc evalu-
ation for pairwise differences via Wilcoxon signed-rank test with Bon-
ferroni correction for all pairwise comparisons (p < 0.05 / 36 = 0.0014). 
Effect sizes for pairwise differences was defined as the difference in 
medians divided by the average of the two interquartile range (IQR) 
values (Ricca and Blaine, 2022). 

2.5. Principal component analysis for linear slopes 

Using linear models (Eq. (1)), each patient had nine slope parameters 
describing their change in each of the PHQ-9 items. Principal compo-
nents analysis (PCA) was computed in the 9-dimensional space of slopes. 
PCA finds the set of orthogonal linear combinations which capture 
maximal variance across participants. Parallel analysis was used to 
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evaluate the strength of principal components (PCs), in which the actual 
eigenvalue of each PC was compared with the 95th percentile of the 
distribution of eigenvalues for that PC from 10,000 randomly generated 
datasets. Coefficients for each significant component were analyzed to 
understand directions of change. 

2.6. Predicting treatment response 

Treatment response was defined via the sign for the first principal 
component (PC1), which by definition captures the majority of variance 
in the data, and in our case represented a weighted rate of change in 
symptoms. Due to data normalization, a negative sign implies a greater 
improvement along PC1 than the mean across participants. To relate this 
to classical measures of response, percent changes in PHQ-9 sum scores 
were also evaluated. Logistic regression was used to predict treatment 

response using patients’ baseline PHQ-9 item responses. An exhaustive 
feature selection was conducted to evaluate all 511 possible subsets of 
PHQ-9 items as features. For each model, classification performance was 
evaluated across 1000 iterations of repeated 5-fold cross validation. 

2.7. Threshold tuning for high confidence predictions 

Logistic regression provides probabilities of test items belonging to 
each class. The choice of classification threshold results in a tradeoff 
between positive predictive value (PPV) and sensitivity, or between 
negative predictive value (NPV) and specificity. For all 511 possible 
subsets of features, a parametric search was conducted across 20 
different classification thresholds ranging from 0 to 1. This resulted in 
over 10,000 distinct classification models, which then underwent cross 
validation as before. To optimize for potential clinical utility, models 

Fig. 1. Effects of ketamine on individual symptoms of depression. (a) Mean (SEM) PHQ-9 sum scores across patients at each of the first eight ketamine sessions. 
(b) Mean (SEM) PHQ-9 item scores across patients at each of the first eight ketamine sessions, for all nine items. (c) One example patient’s item responses for one 
example item (PHQ-9 item #1). Green and blue curves are the linear and exponential model fits, respectively. (See Methods for model equations). (d) Bar plots 
comparing linear and exponential model fits using AIC (left) and BIC (right), such that the bar heights indicate the number of patient-items where the linear (green) 
or exponential (blue) model was a better fit. (e) Mean (95 % CI) linear slopes across patients for each of the PHQ-9 items. P-value shown for pairwise comparison with 
significant difference after Bonferroni correction for multiple comparisons. See Supplemental Table 1 for mapping of item names to PHQ-9 item text (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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were selected that met a performance specification of either: (1) at least 
90 % PPV and at least 10 % sensitivity for predicting “response”, or (2) at 
least 90 % NPV and at least 10 % specificity for predicting “non- 
response”. These criteria were chosen because very high predictive 
value could provide clinically actionable information, even if only for a 
subset of the patients. In contrast, models with lower predictive value 
are unlikely to change clinical management, even if they have higher 
sensitivity. Among the models meeting these specifications, perfor-
mance was ranked by the arithmetic mean of predictive value (PPV or 
NPV) and coverage of the relevant cases (sensitivity or specificity), with 
the best model defined as the one with highest mean of those two 
characteristics. To evaluate generalizability of features, the distribution 
of regression coefficients across all models meeting the specified per-
formance criteria were plotted. 

2.8. Code and data availability 

All data analysis was conducted with custom Python software uti-
lizing open-source scientific and machine learning packages. The code to 
reproduce all results and figures is available at github.com/angevine-
Miller/ketaminePrediction. Data are available upon request. 

3. Results 

This exploratory study was motivated by two major goals. First, we 
sought to understand the dynamics of depression symptoms over the 
course of repeated ketamine sessions. Second, using a symptom-level 
modeling approach, we aimed to predict treatment response for pa-
tients in a real-world clinical setting. We first confirmed that average 
PHQ-9 sum scores improved across the ketamine treatment sessions 
(Fig. 1a) (p < 10− 18, Friedman test). In addition, average responses for 
every individual PHQ-9 item improved over the course of treatment 
(Fig. 1b) (ps < 10− 5, Friedman test). We then proceeded to analyze 
symptom trajectories for each individual patient. 

3.1. Modeling individual symptom trajectories across individuals 

We sought the simplest model that could capture symptom changes 
over the course of treatment in the majority of individuals. In addition to 
a simple linear model (Eq. (1)), we also tested an exponential model (Eq. 
(2)), motivated by prior work showing that exponential functions can 
describe various interventions for depression (Priest et al., 1996; Berlow 
et al., 2021). We fit linear and exponential models to item response 
trajectories for each patient (Fig. 1c), and then evaluated the fit of both 
models using AIC and BIC. Linear models were better than exponential 
models for the majority of patients (104 of 120 for AIC, 105 of 120 for 
BIC) (Fig. 1d), so we chose the linear model as the basis for further 
analysis to maintain consistency/comparability across individuals. 

The slopes of the linear models describe the rate of change in each 
symptom of depression for patients over the course of their ketamine 
treatment. The average slopes across patients were negative for all nine 
items, confirming that patients generally improved across all symptoms 
(Fig. 1e). We detected a difference in slopes between the items (p =
0.012, Friedman test). Post-hoc comparisons revealed that PHQ-9 item 
#2 (depressed mood) had significantly steeper slopes than item #4 
(tiredness) after Bonferroni correction (p = 0.001, Wilcoxon signed-rank 
test) (Fig. 1e). Thus, symptoms of depressed mood improved more 
rapidly than tiredness across ketamine treatment, with a difference in 
medians of about 45 % of the interquartile range (see Methods). 

3.2. Low dimensional variables to capture trajectory changes 

Next, we wondered whether we could parsimoniously capture how 
patients varied in the high-dimensional space of symptom trajectories. 
To understand this we computed a principal components analysis (PCA) 

on the trajectory slopes calculated for each item of the PHQ-9 across 
subjects. We detected two significant principal components (PCs), which 
explained 52.2 % and 16.2 % of the variance, respectively (significance 
calculated using parallel analysis, see Methods) (Fig. 2a). Analysis of 
coefficients revealed that the first PC (PC1) described a weighted rate of 
change for all nine symptoms in the same direction (Fig. 2b). Co-
efficients of the second PC (PC2) showed opposite signs for somatic 
symptoms (e.g. appetite, energy, concentration, movement) and affec-
tive symptoms (e.g. mood, anhedonia, thoughts of self-harm or of being 
a failure) (Fig. 2c). Projecting participants’ slopes data onto these two 
PCs revealed the distribution of patients across these two dimensions of 
symptom variance (Fig. 2d). 

Based on the coefficient weights, the sign of the first principal 
component (PC1) represented whether a patient improved more 
(negative sign) or less (positive sign) than the mean rate of change in 
symptoms (Fig. 2d). This is because each patient’s symptom slopes were 
standardized by the population mean slopes prior to computing PCA. 
Therefore, this offers a simple, data-driven way of differentiating 
treatment responders from non-responders. To better illustrate this, we 
first plotted average PHQ-9 sum scores for patients with negative PC1 
(identified as responders, n = 62) compared to patients with non- 
negative PC1 (identified here as non-responders, n = 58) (Fig. 2e). 
The sum scores among responders improved significantly between ke-
tamine induction sessions (F(7336) = 46.7, p < 10− 45, partial eta- 
squared = 0.49, repeated measures ANOVA). The mean change in sum 
scores between baseline and the final session among responders was 
− 8.7 points (95 % CI: − 9.8 to − 7.6). In contrast, we detected no dif-
ferences in sum scores between sessions among the non-responders (F 
(7224) = 2.07, p = 0.07, Greenhouse-Geisser correction, repeated 
measures ANOVA). The mean change in sum scores among non- 
responders was − 0.40 (95 % CI: − 2.0 to 1.2). 

Based on the distribution of PC2 coefficients across symptom sub-
domains, we hypothesized that the sign of the 2nd PC (PC2) could reflect 
whether there were relatively greater improvements in the affective 
symptom clusters (negative sign) or somatic symptom clusters (non- 
negative sign). To test this, we calculated (for responders only) the 
trajectories of average scores for the affective and somatic subdomains 
of symptoms, grouped using the PC2 as noted above. Responders with a 
non-negative PC2 showed greater improvements in somatic symptoms, 
compared to responders with a negative PC2 (F(7, 329) = 3.03, p =
0.004, mixed ANOVA interaction) (Supplemental Fig. 1a). In contrast, 
we were unable to detect a significant difference in the rate of 
improvement in affective symptoms based on PC2 sign (F(7, 329) =
1.01, p = 0.42, mixed ANOVA interaction) (Supplemental Fig. 1b). Thus, 
the sign of PC2 reliably differentiated patients based on their rate of 
improvement on the somatic subdomain, suggesting improvement in 
this domain of symptoms reflected another meaningful source of vari-
ance even within those who were categorized as responding overall. 

3.3. Predicting response from baseline symptoms 

We identified above a data-driven approach to characterizing the 
antidepressant response to ketamine treatments using changes in indi-
vidual item scores of the PHQ-9. Traditional measures of treatment 
response are defined with respect to the percent change in the overall 
PHQ-9 sum score. To ensure that our categorization corresponds at least 
roughly with more standard definitions of treatment response, we 
computed the percent reduction in PHQ-9 sum score from baseline to the 
last treatment session for patients categorized by negative PC1 (re-
sponders) and non-negative PC1 (non-responders). Among responders, 
the median percent change in PHQ-9 sum scores was a reduction by 39 
% (IQR 25 %). Among non-responders, the median percent change in 
sum scores was 0 % (IQR 22 %) (Fig. 2f), suggesting that this method of 
classifying subjects was a reasonable data-driven measure of categoriz-
ing response. 

Using this categorization, we first asked whether treatment response 
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was related to basic factors such as demographics (age, gender) and 
treatment formulation (IV racemic ketamine vs. intranasal esketamine). 
We detected no differences in average PC1 value based on ketamine 

formulation (esketamine vs IV racemic) (p = 0.59, two-sided t-test), 
gender (p = 0.19, two-sided t-test) or age (r = 0.13, p = 0.17, Pearson’s 
correlation), suggesting these simple factors would not be informative 

Fig. 2. Predicting treatment response from baseline symptoms, (a) Scree plot showing fraction of total variance explained by each principal component (PC) 
from a PCA over the nine-dimensional data of linear slopes for each patient. Significance of PCs was determined by bootstrapping with parallel analysis (see 
Methods). (b) Coefficients of the first PC of the data for each of the features, corresponding to PHQ-9 item slopes. (c) Coefficients of the second PC of the data for each 
of the features, corresponding to PHQ-9 item slopes. (d) Scatter plot of the projections of each patient’s set of linear slopes onto the first two principal components of 
the data, colored according to the sign of the first principal component. Responders (green) are defined as having a negative sign of the first PC, while non-responders 
(red) are defined as having a positive sign of the first PC. (e) Mean (SEM) PHQ-9 sum scores across patients for the first eight ketamine sessions for responders and 
non-responders. (f) Violin plots of relative change in PHQ-9 sum score from baseline to last session for responders (green) and non-responders (red). Bars indicate 
median and extreme values, and width of violin indicates distribution density. Dashed horizontal line indicates 0 change. (g) Histogram of the mean cross-validation 
accuracy for all models from an exhaustive feature selection over all possible subsets of baseline PHQ-9 items as model features. (h) Histogram of accuracies across all 
iterations of cross-validation for the best model from the exhaustive feature selection, i.e. the model with overall best mean CV accuracy. See Results text for the other 
key model performance characteristics for this model. For (b) and (c), see Supplemental Table 1 for mapping of item names to PHQ-9 item text (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 3. Threshold tuning to confidently predict non-response, (a) Diagram depicting threshold tuning approach. Red and green ellipses represent a hypothetical 
projection of data for non-responders and responders, respectively. Black dashed line indicates standard decision threshold for logistic regression, which maximizes 
accuracy. Green and red dashed lines indicate alternate choices for the decision threshold, which maximize positive predictive value (PPV) for predicting response or 
negative predictive value (NPV) for predicting non-response, respectively. (b) Diagram depicting three major steps of model selection procedure: feature search, 
threshold tuning, and cross validation. Grey boxes represent the different sets of baseline PHQ-9 items that can be tried as a feature set. Threshold tuning, as in (a), 
was conducted for each feature sets, resulting in over 10,000 models that then underwent cross validation. (c) Scatter plot of cross validation model performance for 
some of the best models for predicting response (green) or non-response (red). Plot shows the inherent tradeoff between predictive value (PPV or NPV) and coverage 
of the relevant cases (sensitivity or specificity). Green dots represent the best models, in terms of highest sensitivity (y-axis), among all of the models with at least a 
minimum PPV (x-axis). Red dots represent the best models, in terms of highest specificity (y-axis), among all of the models with at least a minimum NPV (x-axis). 
Dashed grey lines show cutoffs for our predefined model performance specifications: PPV or NPV > 90 %, sensitivity or specificity > 10 % (upper right quadrant). (d) 
Violin plots showing the distribution of regression coefficients for each PHQ-9 item, across all models meeting the performance criteria of NPV > 90 % and specificity 
> 10 % (upper right quadrant in panel c). Positive coefficients favored response, and negative coefficients favored non-response. Dotted horizontal line indicates a 
coefficient of 0 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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for predicting treatment response (data not shown). 
We next asked whether treatment response could be predicted from 

patients’ baseline symptoms of depression. Specifically, we used logistic 
regression to predict the sign of PC1 for individual patients, using pa-
tients’ baseline single-item PHQ-9 item scores as features. To identify 
the best features for prediction, we conducted an exhaustive feature 
selection by fitting logistic regressions with all 511 possible subsets of 
PHQ-9 items as features. For each of these 511 models, performance was 
evaluated with repeated 5-fold cross-validation (CV). Nearly all of the 
models (509 of 511, 99.6 %) had better-than-chance average CV accu-
racy, though all were only moderately better than chance (Fig. 2g). 

The model with best CV accuracy used only two PHQ-9 items as 
features: item #1 (anhedonia) and item #6 (feeling of failure). Higher 
baseline responses on either item predicted subsequent treatment 
response. For this model, the average classification accuracy to holdout 
data was 60.3 % (95 % confidence interval 59.5 – 61.1 %) (Fig. 2h). The 
precision (PPV) was 60.2 %, recall (sensitivity) was 68.3 %, and F1 score 
was 64.0 %. The second-best model used only one item as a feature, item 
#2 (depressed mood), with nearly as good performance as the best 
model: 60.0 % average accuracy (95 % CI 59.2 % - 60.8 %), 60.0 % 
precision, 67.7 % recall, and 63.6 % F1 score. Patients with higher 
baseline depressed mood were more likely to respond. 

3.4. Threshold tuning for high confidence predictions 

Although the above approach identified many models that can pre-
dict treatment response better than chance, none of those models had 
excellent performance characteristics. They had a maximum of around 
60 % predictive value, which is unlikely to provide sufficient prediction 
confidence for changing clinical management. We reasoned that a more 
clinically useful model would have a very high predictive value (PPV or 
NPV). Such a model would provide clinically actionable information, 
even if only for a subset of the patients. For example, if a model could 
predict with over 90 % NPV that a patient will not respond to ketamine, 
then we could be quite confident in recommending an alternative 
treatment for that patient. 

Seeking such a model, we used threshold tuning in order to optimize 
the classifiers toward high predictive confidence (Fig. 3a). Specifically, 
instead of using probability 0.5 as the threshold to classify patients as 
responders and non-responders, we evaluated a range of thresholds 
between 0 and 1 (see Methods). Changing the threshold in this way 
necessarily results in a tradeoff between prediction confidence (PPV or 
NPV) and coverage of the relevant cases (sensitivity or specificity). For 
model selection, we conducted another exhaustive search across all 
possible subsets of baseline PHQ-9 items, and for each of these feature 
sets, we applied threshold tuning to evaluate a range of thresholds 
(Fig. 3b). This resulted in over 10,000 distinct models that were cross 
validated to evaluate model performance on holdout data (Fig. 3c). 

We then selected only those models with very high predictive value, 
while at the same time retaining a minimum coverage of the relevant 
cases (Fig. 3c, upper right quadrant). Specifically, we searched for 
models with either (1) at least 90 % PPV and at least 10 % sensitivity, or 
(2) at least 90 % NPV and at least 10 % specificity. We identified hun-
dreds of models that, with the appropriate decision threshold, could 
predict non-response with those performance criteria. The best of these 
models (see Methods) had a NPV of 96.4 %, while retaining a specificity 
of 22.1 %. This model used only three baseline PHQ-9 items as features: 
item #2 (depressed mood), item #5 (changes in appetite or eating), and 
item #9 (self-harm or suicidal ideation). Relatively speaking, lower 
values on item #2 and item #5 and higher values on item #9 favored 
non-response for this model. 

To determine the generality of this observation, we plotted distri-
butions of coefficients across all models meeting the performance 
criteria of >90 % NPV and >10 % specificity. Of these models, higher 
values on item #9 (self-harm or suicidal ideation) favored non-response 
in 98.7 % (224 of 227) models in which it was a feature (Fig. 3d). Item 

#3 (difficulty sleeping) also consistently favored non-response for 100 % 
(130 of 130) of the models in which it was a feature (Fig. 3d). In contrast, 
lower values on the other seven items favored non-response in the ma-
jority of models, and lower values on item #1 (anhedonia), item #2 
(depressed mood), item #4 (tiredness or low energy), and item #5 
(changes in appetite or eating) were particularly consistent predictors of 
non-response (Fig. 3d). Taken together, these findings suggest that 
relatively speaking non-responders’ symptoms were weighted more to-
wards sleep difficulties and suicidal ideation, as compared to the other 
symptoms of depression (Fig. 3d). 

Thus, using threshold tuning, we were able to identify classification 
models that predict non-response with very high confidence (over 96 % 
NPV) for a subset of 22 % of the patients, based purely on patients’ 
baseline PHQ-9 symptom scores. In contrast, we detected no models for 
predicting treatment response at the specified performance cutoffs 
(Fig. 3c, green). 

4. Discussion 

In this study we developed an approach for modeling changes in 
symptoms of depression over the course of repeated ketamine sessions. 
Using this approach, we found that all symptoms improved across the 
course of ketamine treatment, and the symptom of depressed mood 
improved more rapidly than the symptom of low energy (Fig. 1). We 
found a range of individual differences in these item response trajec-
tories, both in the degree of change in overall depression level, and in 
specific subdomains of symptoms (Fig. 2). We developed logistic 
regression classifiers, which can predict better than chance whether 
patients will respond to ketamine, using their baseline symptoms alone 
(Fig. 2). Finally, using threshold tuning, we found classifiers that can 
identify a subset of patients who are highly unlikely to respond to ke-
tamine with over 96 % predictive value (Fig. 3). Our findings shed light 
on how ketamine affects specific symptoms and dimensional features of 
depression, and the method for identifying non-responders may prove 
useful for informing rational treatment recommendations among a 
growing list of novel therapeutics for treatment resistant depression 
(Berlim et al., 2013; Kayser et al., 2015; Figee et al., 2022; Goodwin 
et al., 2022). 

Few prior studies have analyzed how different depression symptoms 
respond to ketamine, particularly across repeated doses. Floden et al. 
(2022) conducted a symptom-level analysis of data from the TRANS-
FORM 2 trial of repeated intranasal esketamine for TRD. They found that 
eight twice-weekly doses of esketamine plus oral antidepressant led to 
improvements in all PHQ-9 items except item #9 concerning suicidality, 
which was expected due to exclusion of patients with high suicidality in 
that trial (Floden et al., 2022). Our data, which did not exclude patients 
with high suicidality, found that all nine symptoms improved including 
suicidality. However, there were differences in the rates at which some 
of the symptoms improved across repeated ketamine sessions. 

The symptom of depressed mood improved faster than the symptom 
of low energy. This supports results from Chen et al. (2021), who found 
that a single infusion of low-dose IV ketamine resulted in greater re-
ductions in cognitive and affective symptoms, compared to somatic 
symptoms (Chen et al., 2021). Similarly, Park et al. (2020) found that 
typical/melancholic symptoms improved more rapidly than atypical 
symptoms of depression after a single dose of IV ketamine (Park et al., 
2020). Furthermore, using principal component analysis (PCA), we 
found significant individual variation in whether patients improved 
more in affective symptoms (e.g. depressed mood, anhedonia, suicidal 
ideation) or in somatic symptoms (e.g. changes in appetite, concentra-
tion, or energy level) suggesting that symptom response to ketamine is 
patient-specific. These patient-specific differences in symptom response, 
and also baseline symptoms, may inform predictive models. For 
example, Pettorruso et al. (2023) found that certain baseline symptoms 
such as anhedonia predicted response to esketamine. 

Here, using machine learning classifiers, we also were able to predict 
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which patients would respond better than chance using their baseline 
symptoms alone. A key factor was a difference in baseline depression 
severity, such that responders had more severe baseline depression than 
non-responders. These results may be counterintuitive, as one might 
expect patients with more severe depression to be more treatment 
resistant. A study by Jesus-Nunes et al. (2022) found that patients with 
more severe depression were less likely to respond to a single infusion of 
IV ketamine or esketamine. On the other hand, our data may reflect the 
consistent finding that antidepressants separate from placebo most 
prominently among patients with severe baseline depression (Khan 
et al., 2002; Kirsch et al., 2008; Fournier et al., 2010), which has also 
been observed for ketamine (Su et al., 2017). It is unclear how much of 
that is due to stronger effects of the active drug or weaker effects of the 
placebo among patients with more severe depression. It is also possible 
that baseline depression severity may signal different underlying psy-
chopathologies, with consequent differences in response to ketamine, 
but future studies will be necessary to explore that possibility. 

Importantly, the standard machine learning classifiers noted above 
are not likely to be useful in the clinic as they can only predict response 
with about 60 % accuracy and positive predictive value (Fig. 2). Simi-
larly, Pettorruso et al. (2023) were able to predict response to esket-
amine with an overall accuracy of about 68 %. We reasoned that very 
high predictive values (over 90 % PPV or NPV) would be required for a 
model to guide clinical decision making, particularly when deciding not 
to recommend a potential treatment in individuals with severe or 
treatment-refractory conditions. We therefore optimized our classifiers 
for either high PPV for identifying responders, or for high NPV for 
identifying non-responders. We did this via threshold tuning, in which 
we searched over the full space of decision thresholds, and then selected 
classifiers with optimal cross-validated performance characteristics. 
Using this approach, we found models that could predict non-response to 
ketamine, i.e. treatment failure, with over 96 % NPV. 

This excellent NPV necessarily comes at the expense of a higher false- 
positive rate, so we detect only a subset of the non-responders (22 %). 
However, the tradeoff is that for those patients who it does identify as 
non-responders, we will be fairly confident that they will in fact not 
respond. As such, this model provides clinically actionable information 
for those patients. Regarding specific predictors, we found that more 
severe suicidal ideation and sleep difficulties were consistent predictors 
of non-response, whereas less severe responses to the other symptoms of 
depression favored non-response. Less severe anhedonia, depressed 
mood, tiredness, and appetite symptoms were particularly strong and 
consistent predictors of non-response. Intriguingly, though, the only 
symptoms for which higher scores consistently predicted non-response 
were sleep problems and suicidality. 

The latter aligns with Pettorruso et al. (2023), who also found that 
suicidality predicted non-response to esketamine, whereas anhedonia 
and hopelessness were positive predictors of response. It is important to 
note that higher suicidality could predict non-response to ketamine, 
while at the same time ketamine may reduce suicidality for patients who 
respond (Jollant et al., 2023). Put differently, ketamine was less likely to 
be effective for patients with a particular pattern of symptoms, charac-
terized by higher suicidality and sleep problems relative to the other 
symptoms of depression like anhedonia and depressed mood. Hypo-
thetically, this specific pattern of symptoms may be an indicator of a 
more difficult to treat depressive illness. It could also suggest the pres-
ence of comorbid difficult-to-treat conditions, including personality 
disorders or PTSD, which were common among these patients. However, 
for those patients who did respond, all nine symptoms of depression, 
including suicidality and sleep, were likely to improve. Future 
pre-registered and controlled studies will be necessary to test whether 
these findings replicate and generalize. The simple approach of 
threshold tuning to find clinically meaningful predictions may be useful 
for other treatments as well. 

4.1. Limitations 

There are several important limitations of this study. First, this is a 
non-registered secondary analysis, so the results are fundamentally 
exploratory and require confirmation with pre-registered and experi-
mental studies. These are real world clinical data without placebo or 
wait list control groups, making it impossible to distinguish the role of 
nonspecific factors including placebo. For the same reason, we cannot 
exclude the role of regression to the mean, which is a possible expla-
nation for observing improvement among patients with more severe 
baseline depression. However, regression to the mean is unlikely to be 
the only driver of this finding, since the average trajectories for re-
sponders and non-responders did not converge to a common mean 
value. 

An intrinsic limitation of the threshold tuning approach is that 
excellent negative predictive values (NPV) come at the expense of higher 
false positive rates, i.e. lower specificity. Our best model has over 96 % 
NPV at the expense of identifying a subset of 22 % of the actual non- 
responders. Our rationale is that a very high NPV is required for clini-
cians and patients to decide not to pursue a potentially life-saving 
intervention for TRD. This allows a clinician interpreting results for an 
individual patient to confidently recommend alternative treatments, 
such as ECT or TMS, instead of ketamine. A future research direction 
would be to improve model specificity without sacrificing NPV. How-
ever – again, it is important to note that even in our current model, 22 % 
of individuals who were referred to the VA ketamine program would not 
have had to trial the treatment, indicating an immediate clinical benefit 
to both patients and resource management. 

Another potential limitation is the real-world nature of these data, in 
which patients have numerous psychiatric and medical comorbidities. It 
is possible that these comorbidities affect the specific ways in which 
patients respond to ketamine. At the same time, this may improve the 
generalizability of our results to real-world clinical contexts where 
comorbidities are common – and is thus also reasonably a strength of 
this analysis. It is also important to highlight that psychotherapy was not 
provided in concert with ketamine treatments, so our data do not speak 
to the potential for ketamine-assisted psychotherapy to prolonging or 
change its effects (Joneborg et al., 2022). Finally, we lack detailed pa-
tient accounts of their treatment, which would be helpful for under-
standing patient-centered and functional outcomes beyond those limited 
data that are reflected on the PHQ-9 questionnaire. 

5. Conclusion 

Repeated ketamine and esketamine led to progressive improvements 
in all symptoms of depression, but depressed mood improved faster than 
low energy. Using machine learning classifiers, we could predict non- 
response to ketamine with very high confidence for a subset of the pa-
tients. If validated in future studies, this model could be useful for 
identifying patients unlikely to benefit from ketamine, who might be 
better served by other treatments. 
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